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Diisseldorf 1, Federal Republic of Germany 

Received 18 January 1988 

Abstract. The general epidemic process (GEP), a stochastic multiparticle process which 
exhibits a critical point near an absorbing state and leads to percolating clusters, is studied 
in a finite environment. Using renormalisation group techniques, we calculate the linear 
relaxation time in a cubic geometry of finite size L, with periodic boundary conditions 
imposed. The corresponding scaling behaviour to O ( E )  ( E  = 6 - d ,  d being the spatial 
dimension) is presented in universal form. 

Epidemiology and ecology have become major research areas of all natural sciences 
within the last decade. It has been generally realised that most fundamental processes 
in these fields can be studied using the modern tools of statistical mechanics. In 
particular, universal (critical) properties of systems involving an infinite number of 
degrees of freedom can be successfully explored using renormalisation group ( RG)  

ideas. Among a variety of techniques based upon these ideas, the powerful E expansion 
provides one of the most reliable methods to determine critical exponents and scaling 
functions. It allows the analytic calculation of universal properties by means of a 
systematic expansion in powers of E = d,- d around the upper critical dimension d , .  

So far, its main limitation consisted in the fact that it could be applied to systems 
of infinite size only. Systems of finite size, however, are essential for all numerical 
techniques which simulate processes on small samples and then extrapolate data using 
finite-size scaling ideas [ 1,2]. To overcome this gap between analytic and numerical 
techniques, BrCzin and Zinn-Justin [3] devised an analytic scheme which allows for 
the calculation of size-dependent universal scaling functions within an E expansion. 

In this letter, we will report results of a study of finite-size effects in a model of 
general epidemic processes (GEP) which exhibits a critical point near an absorbing 
state and leads to percolating clusters. The GEP is a stochastic multiparticle process 
which describes the temporal evolution of a local density of infected individuals, 
n ( x ,  t ) ,  where x = (x, , . . . , x d ) .  It is characterised by the following features. 

(i)  There is an absorbing set of stationary states at n ( x ,  t )  = 0, corresponding to the 
situation where the epidemic has become extinct. 

(ii) The disease spreads (diffusively) in the available environment. 
(iii) Individuals can become immune to the disease. Thus, the net infection rate 

depends on the number of infected individuals and on the number of immune 
individuals, introducing a memory term into the process. 

(iv) Microscopic degrees of freedom are subsumed in the form of a Langevin noise 
which, however, must respect the absorbing state. Hence, its correlations have to vanish 
for n ( x ,  t )  = 0. 
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A Langevin equation which incorporates these characteristics in a simple yet 
self-contained form (in the renormalisation group spirit) is given by 

The first term on the right-hand side models the diffusive spreading (ii)  of the disease. 
The next two terms represent the net infection according to (iii).  [(x, t )  is a Langevin 
force, with correlations subject to (iv): 

([(x, t)[(x’, t ‘ ) )  = A ~ w ~ T I ( x ,  t ) s (x  - x’)S( t - t ’ )  (2) 

and A o ,  T~ and wo are constant couplings. By a simple rescaling we can ensure wb = wo 
which is in fact preserved under the renormalisation group. The characteristic feature 
of the GEP which distinguishes it from other evolution processes resides in the non- 
Markovian nature of the non-linear coupling associated with wo. The term 

dt’ n(x, t’) sums up the total density of individuals who catch the disease at any 
time between its outbreak and the time t .  Thus it is a measure for the local density of 
immune individuals. 

In the context of ecology, n ( x ,  t )  may be interpreted as the local density of, say, 
a forest fire, where I:, dt’  n(x, t ’ )  is proportional to the amount of burnt fuel (ash) at 
time t. 

The process (1) and (2) was introduced in [4 ,5]  and studied in [6-91. It was shown 
to exhibit a second-order phase transition near the absorbing state. Its critical properties 
have been analysed within an E expansion about the upper critical dimension d, = 6 
[8]. In [8], it was also found that the G E P  belongs to the universality class of dynamic 
percolation. Further, it was pointed out that even a possible reinfection of ‘immunes’ 
will not change the universal properties of (1) and (2), since reinfection leads to a 
coupling which is irrelevant in the renormalisation group sense near d, = 6. 

To study critical properties of the GEP within the framework of renormalised field 
theory it is convenient to recast the Langevin equation (1) in conjunction with (2) as 
a dynamic function [lo-121 

~ ~ - A - ~ w , n l ( x ,  t ) + A o w ,  dt‘n(x,  t’))]n(x, t ) .  

( 3 )  

Within this formalism all correlation and response functions can be expressed as 
functional averages with weight exp( - J ) .  Finite-size effects can be investigated by 
considering the model (3)  in a finite cubic geometry of linear size L with periodic 
boundary conditions imposed. We expand the fields n, n” in Fourier modes 

n(x, t )  = C exp(iqx)n(q, t )  
4 

in which each component of q = (4, , . . . , q d )  takes only discrete values which are 
multiples of 27r/L. It is obvious that (for L + m )  the q = O  mode cannot be treated 
perturbatively as the critical point T~ = 0 is approached, because the propagator of the 
n’, n fields has an isolated pole at q = 0 and diagrams involving (n’n) loops will diverge. 
Therefore, in order to calculate finite-size effects, one has to construct an effective 
action for the q = 0 mode (which itself has to be treated non-perturbatively) by tracing 
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out all modes with q # 0. Details of this procedure, presented briefly below, can be 
found in [ 131, where we have discussed a stochastic model describing an evolution 
process related to (3) with a different upper critical dimension, of d, = 4. 

Introducing the decomposition 

@ ( t ) =  L-d ddxn(x, t )  (4) I n(x, r )=@( t )+V(x ,  t )  

& ( t ) =  L-d  ddxn(x, t )  I ii(x, t )=&( t )++(x ,  t )  

which allows the separate treatment of the q = 0 modes @( t ) ,  &( t )  in J [  ii, n],  we obtain 

( 6 )  J = J c ;  + f 2 ’ + .  . . 
with Jk:),,, being the free (0) functional for the q = 0 (homogeneous) modes 

J E m = L d  ~ d t & [ ~ , + A o ( ~ o - f w o ~ + w o A o  (7)  

and 

a, + ~ ~ ( 7 ~ -  A )  - ,lowo&+ A‘w I:, dt’ @( t ) ) V  

+ A ~ ~ ~ ( + @ A ,  J’ --03 dt’V(t’)+&VAo J‘ -m dtT(r ’ ) - f+2@)] .  (8) 

Integration over all q f 0 modes can now be performed perturbatively via 

exp(-Jho,) = exp(-Jk;,,,) [d+][dT] exp(-J”’) ( 9 )  J 
and will lead to an effective action Jhom. This calculation corresponds to a double 
expansion in powers of the fields & and @, arising from the vertices in J ” ) ,  and in 
the number of loops, due to the insertion of those vertices which do not contain the 
fields @, & in diagrams with a fixed number of 6 and @ fields. Note that we have 
omitted these vertices in (6 ) ,  since they do not contribute at the one-loop level. 

To this order in the number of loops and to third order in @, 6 we can express 
Jh,m[6, @I in the following form (see [13] for details): 

Jhom[&,@]= Ld dt  ( ~ o & ~ + A o ~ o & @ - ~ A o ~ o & 2 @ + A ~ ~ o ~ @  j:adt’@(t’)) 

where 

(10)  

(11)  
f o =  1 -$bwi 4 0 = ~ o + , a w o  1 2  Go= wo( l -2bwi )  

with 
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The sums in (12a) and (126) are evaluated in the appendix: 

U (  T,  L )  = G,( 15/277)“~( -2/e + ~ ( x ) / x )  

b ( ~ ,  L )  = G,(L/27r)6-d(1/e -;c+’(x)) 

(13a) 

(136) 

with x = T(L/27r)2 and G, = r( 1 +;e)/(477)”/’. In  (13a) and (136) we have isolated 
the pole terms and u ( x )  (u’(x) = du(x) /dx)  is an analytic function for x >  -1. Its 
limiting behaviour for x >> 1 (see the appendix) is given by 

(14) 

From the form of the bare action, equation ( lo) ,  and the one-loop corrections, we can 
see that the partial trace over the q # O  modes generates e poles and shifts in the 
couplings. The E poles can be absorbed in the well known bulk 2 factors, presented 
in [8], thus replacing the bare couplings and fields A ” ,  T”, wo, @, dJ by their renormalised 
counterparts A, T,  w, a R ,  6R. The shifts are taken care of by a finite redefinition of 
the coupling constants and the renormalised action (including the one-loop corrections) 
for the q = 0 modes can thus be written 

u ( x )  = x(ln x - 1) +constant. 

where 

i=  l+$u[u’ (x) -2  l n ( p L / 2 ~ ) ]  ( 1 6 ~ )  

<=  ~ { l + ; u [ u ( x ) / x - 2  ln(pL/27r)]} (16b) 

$ = w{ 1 + u[a’(x) - 2 In(pL/27r)]} ( 1 6 ~ )  

and we have introduced a new coupling U = GFp-?w2. 
It is a generic feature of the technique employed here that for d < d, the shifts 

produced by the loop corrections can be absorbed by a redefinition of the couplings. 
This is analogous to the calculation in the purely static case (a4 theory with d ,=4)  
and has been reported in [14] for models with simple relaxational dynamics. Note, 
however, that in the present model, similar to the model studied in [13], we need a 
non-trivial wavefunction renormalisation already at one-loop order, and thus had to 
introduce an additional shift (equation ( 1 6 ~ ) ) .  It should also be noted, following from 
equations (12) and (16), that for d > 6 the loop corrections which result from tracing 
out the q # 0 modes are irrelevant. They only produce a finite shift in the critical 
parameter T and a finite renormalisation of the couplings. 

Now we can determine the linear relaxation time for our model in a finite geometry. 
This characteristic time corresponds to the smallest non-zero eigenvalue of the Fokker- 
Planck equation associated with the Langevin equation (1 )  and can be derived from 
a simple rescaling of the dynamic functional Jhom. With 

@ ( t )  = acp(s) & ( t )  = Li+ (s )  t = p s  (17) 

and utilising a symmetry transformation of the dynamic functional J observed in [8] 
which amounts to PA = &/a we can write 
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where we have dropped the index R on the fields for simplicity. Choosing now a, 6 
such that 

LdCu’cyi, L d & 3 $  = 1 (19) 

The essential feature of (21) is the dependence of the whole dynamical functional on 
one single parameter only. 

Therefore, the linear relaxation time SR, measured in the rescaled time S, must be 
a function of this single parameter only: 

sR = f R ( Y )  (22) 

whence 

Note that the scaling function f in (23) is associated with the effective action for the 
q = 0 modes and cannot be computed perturbatively. It may however be derived from 
the Fokker-Planck equation corresponding to (21) .  

Using (16) and (23) we obtain the linear relaxation time at the fixed point U* = $ E  

[8] in universal form: 

g ( y )  = y(1 +y)du/3-1{1 +&&[ln(l + y )  + 3u(y)/y - 4 ( ~ ’ ( y ) ]  + o(E ’ ) )  

y = rp-2(pL/25r)‘/v 

(24c) 

with v = ~ + & E  and z = 2 - &  being the critical exponents to O ( E ) .  In the bulk limit 
y + 00, t R  must become independent of L, a fact which follows directly from the limiting 
behaviour of the scaling function [13]: 

f d x )  - l / x  for x + 00. (25) 

The other limit of interest, y+O, corresponds to a finite system at the critical ‘tem- 
perature’ of the bulk. Equation (24) then yields 

t~ = ( A  CL ’ 1- I ( PL/ 2 ) ‘h R( 0 )f~( g (0) ). (26) 
The limiting forms of the functions hR(y),  g ( y )  for y + 0 are given by (see the appendix) 

hR(0) = 1 +0 .1907~ (27) 

g (0) = - 0.0489 E. (28) 
It follows from our results that whereas finite-size scaling is valid below d ,  = 6, it is 
not valid for d 2 6 ,  since there is a singularity for E + O  [15, 161. 
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To summarise, we have calculated the linear relaxation time for the G E P  in a finite 
geometry. As epidemic processes under realistic conditions are always restricted to 
finite environments, we expect our results to be important for simulations of small 
samples in two and three dimensions (for a simulation of a large G E P  sample in d = 2 
see [6]). Furthermore, as the G E P  belongs to the class of systems exhibiting non- 
equilibrium critical behaviour, we believe that further studies of the G E P  and related 
processes [ 131 will be of great interest. 

This work has been supported in part by the Sonderforschungsbereich 237 (Disorder 
and Large Fluctuations) of the Deutsche Forschungsgemeinschaft. 

Appendix 

In this appendix we derive some important properties of the function a ( x ) .  The lattice 
sum to be evaluated is given by 

where x = ~ ( L / 2 7 7 ) ~  and n = (n,, . . . , n d ) ,  n, =integer. The sum in (A l )  can be conver- 
ted into an integral 

Z(x)=- (277)d 1 "ZO c ( x +  1 n 2 ) 2  -l~oOOd,[A(t)d-l]re-rx - ( 2 d d  

with 
00 

A ( t ) =  e-'"'=1+2e-'+ . . .  
n=- -o t  

=(~/r)'~'A(.n~/~)=(n/t)''~[l+2exp(-r~/t)+. . .I. (A31 

For x >> 1 the integral may be obtained using dimensional regularisation: 

r(2 - i d )  Xd/2 -2 ,  
Jom d t [ A ( t ) - 1 - ( f) ' I 2 ]  t ( e- rx  - 1 ) 

(477) d / 2  (2.n)d 
Z(x) = Z(O)+ 

+constant + O( l / x )  = -  2Gc X1--E/2 

E(l -;E) 

with G, = I ' ( l + i ~ ) / ( 4 7 r ) ~ " .  Thus we define a function a(x)  by 

I ( x )  = G, [ - (~ /E )x+  u(x)+O(E)] (A51 

a(x)=x( lnx- l )+constant+O(l /x)  (A61 

In order to find an expansion for u ( x )  if (XI<< 1 we expand Z(x) in powers of x: 

where 

for x >> 1. 

( - x ) k  1 
k = O  k! (257)d 

Z(X)  = - - jOm dt  tk+'[A(t)d - 13. 
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The integral in (A7) is convergent in d = 6 dimensions if k 3 2 and can be calculated, 
using the identity given in [17]: 

joa d t  tA[A(t)6-1] =4r(A + 1)[45(h - 1)P(h + l ) - P ( h  - l ) l ( h  + l ) ]  (A81 

where 5 denotes Riemann's 5 function and is defined by the sum 

( -1y  
p ( z )  = Zo ( 2 n  + 1)Z. 

The remaining two integrals ( k  = 0 , l )  can be performed with the help of a suitable 
analytic continuation. 

For k = 1 we write 

-!- jOm d t t 2 [  A( t ) d  - 1 J 
(2.1r)d 

r ( 3  - i d )  - - -!- lom d t  t2[A( - 1 - ( r / t )d /2  e-'] + 
( 2 d d  (4?T)d/2 

-- d t  t2"{[A( t ) 6 -  11 - ( T / ? ) ~  e-'}+ O( E )  

where we have used (A8). CE is Euler's constant, and the prime denotes the derivative. 
For k = 0 we write 

r ( 4  - i d )  - -L loE d t  ?[A( t ) d  - 1 - ( r / t ) d ' z ( l  + t )  e-']+ 
( 2 d d  ( 4 ~ ) ~ / ' ( 2  - i d )  

= - G c ( y + & )  + O ( E )  

where we have again used (A8). From the definitions (A5) and (A7) we obtain 

IC 

cr(x)= 1 crk(--X)& 
k = O  

where 

U& = [4(k + 1)/r3][45(k)P(k +2)  - P ( k ) l (  k + 2 ) ] k  2 2. 
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